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Abstract. The phenomenon of liquid–glass transition is commonly associated with ergodicity
breaking. It is apparent that the structurally arrested glassy phase is non-ergodic. However, finding
unambiguous criteria that would allow one to detect the crossover from ergodic to non-ergodic
behaviour in a liquid subjected to supercooling remains a problem of profound conceptual interest.
Moreover, meaningful criteria of ergodicity must be expressed in terms of finite-time observation of
macroscopically measurable quantities. This paper discusses a new diagnostics of non-ergodicity
in supercooled liquids based on comparing the entropy and diffusion.

1. Introduction

Some liquids, having been cooled to below the melting pointTm, avoid crystallization and
remain in a metastable equilibrium state. Of these liquids, the most interesting are the so-
called fragile liquids [1] which under supercooling demonstrate a much stronger temperature
dependence of the rate of molecular dynamics than would be expected from the Arrhenius law.
Another striking dynamical feature of the supercooled fragile liquids is stretched-exponential
relaxation behaviour [2]. When approaching the glass transition point,Tg, the supercooled
liquid falls out of equilibrium as the characteristic timescales of some of the relaxation processes
exceed the observation timescale.

It is common to describe the onset of structural arrest and apparent solidification observed
in a supercooled liquid atTg as the transition from ergodic to non-ergodic behaviour [3].
Whether or not this interpretation is correct depends on what definition of ergodicity is applied.
Although the ergodic hypothesis is a most fundamental concept of statistical mechanics, its
formulation still remains an issue of controversy [4]. The ergodic hypothesis asserts that the
time average of a dynamical variableF(0) must converge to its ensemble average:

lim
T→∞

1

T

∫ T

0
dt F (t) =

∫
�

dµ(0) F (0) (1)

whereµ is an invariant measure determined by the macroscopic constraints. Essentially,
this invariant measure specifies the region of motion, on the subspace where the ensemble is
defined. Thus, ergodicity depends entirely on the choice of the subspace; any system can be
regarded as ergodic within a restricted ensemble.

Two major problems have to be addressed in order to apply the above definition to the
behaviour of a real liquid under supercooling. First, for a non-equilibrium glassy state below
Tg, the concept of ergodicity, to be meaningful, should refer to the underlying equilibrium
state. Second, the above definition of ergodicity refers to an ensemble of identical systems
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and infinite observation time. In fact, however, we need to assess the ergodicity of a single
system within finite time. The original Boltzmann interpretation of ergodicity asserting that the
system’s phase trajectory covers with sufficient density the whole relevant phase-space region
is apparently useless for such a purpose. In the following, we shall discuss possible ways of
detecting the non-ergodic behaviour from the finite-time measurements of macroscopically
accessible quantities. A novel diagnostics of ergodicity breaking in supercooled liquids
is proposed, based on the recently found relation between the static structure and atomic
diffusion [5].

2. Ergodicity, mixing and stochasticity

The fact that the entropyS of an equilibrium system ofN particles is an extensive quantity:
S ∝ O(N), implies that there exist a finite correlation lengthξ and a finite correlation time
τ [4] such that regions separated by distances exceedingξ evolve independently and produce
statistically indistinguishable time averages for time intervals exceedingτ . The properties of
the equilibrium liquid state can thus be described in terms of the ensemble of independently
evolving regions. The above condition of ergodicity (1) means that the elements of the thus-
defined ensemble must produce statistically identical time averages within the observation
time.

In dealing with systems of particles, it appears reasonable to consider effective ergodicity
based on the concept of mixing [6]. The latter requires that the measure of the points of a
regionR of the phase space which happened to be in any other regionR′ after a sufficiently
long timet must be proportional to the volumes of these regions:

lim
t→∞0[R(t) ∩R′] = 0[R(0)]0[R′]. (2)

If a dynamical system satisfies this condition, its phase trajectory uniformly samples the coarse-
grained phase space. Notice that although the property of mixing is sufficient to ensure
ergodicity, it is not known whether this is also a necessary condition for ergodic behaviour [4].

The approach to effective ergodicity can be monitored by a measure based on the idea
of statistical symmetry. The latter means that time averages of the quantities associated
with independently evolving regions of a system (or its constituent particles) must become
statistically indistinguishable when approaching ergodic equilibrium; this is an obvious result
of the independence principle. Iffi is a quantity associated with particlei, the respective
measure of ergodic convergence for a system ofN identical particles is defined as [7]

Rf (t) = 1

N

N∑
i=1

[
1

t

∫ t

0
fi(s) ds − 〈fi〉

]2

(3)

where〈fi〉 is the ensemble average (the average over all of the particles of the system).
It was found that, in a stable liquid state, this measure, defined for a particle energye, decays

with time asRe ∝ t−1. By contrast, in the glass transition domain it asymptotically approaches
a non-zero limit, thus demonstrating ergodicity breaking. Although ergodic convergence will
be eventually attained at a sufficiently long observation time, this result is significant in that it
clearly shows separation of the relaxation timescales in strongly supercooled liquid, associated
with ergodicity breaking. This analysis, however, requires full information on the phase
trajectory that is not available in macroscopic experiments.

The effective ergodicity in the described sense is realized for the systems with the property
that two phase trajectories, initially infinitely close, diverge exponentially with time [6, 8].
For each phase-space coordinatexi , this divergence is quantified by the respective Lyapunov
exponentλi : δxi(t) ∝ exp(λit). The quantity that characterizes the rate at which the state
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of an exponentially chaotic system is delocalized in the phase space is the Kolmogorov–Sinai
entropy [6]. According to Pesin’s theorem [9], it can be expressed as the sum of all positive
Lyapunov exponents:

hKS =
∑
λi>0

λi. (4)

Notice that the connection between the exponential chaos and mixing, although intuitively
clear, has been rigorously proved only for a few simple cases, like the gas of hard spheres [10].
Numerical simulations appear to be a natural way to extend these results to real systems.

The central conjecture discussed here is thatergodicity of a dynamical system should
be understood as global chaotic connectivity of its region of motion. If exponential chaos
is confined to subregions connected only on sufficiently long timescales, two trajectories,
arbitrary close but belonging to different regions of chaotic behaviour, do not diverge
exponentially. Obviously, such decomposition of a single chaotic domain results in (i) sep-
aration of the relaxation timescales and (ii) slowing down the relaxation dynamics. In the
following, we present arguments, supported by evidence from simulation, indicating that the
discrepancy between the volume of a single stochasticity region and the total volume of the
region of motion can be assessed by exploiting a recently found universal relation between the
diffusion coefficient and the entropy [5].

3. Entropy and diffusion in the ergodic domain

The dynamics of dense fluids is dominated by the effect of coupling between the diffusive
motions and local structural relaxations [11,12]. As suggested above, a liquid can be regarded
as an ensemble of independently relaxing regions represented by points in the respective
configurational space; then the rate of diffusion is determined by the frequency at which
these regions are changing their configurations. Each point of the ensemble explores adjacent
positions at the rate determined by a characteristic clock frequency. The transition occurs if
the destination configuration is open, the probability of which is eS whereS is the entropy. It
is convenient to use the excess entropy:Sex = S − SPG, whereSPG is the entropy of perfect
gas under the same conditions [13].

In order to achieve universality in describing the liquid dynamics, the above model can
be formulated in terms of the hard spheres. It has been recognized by Enskog [14] that the
momentum and energy transfer in a dense hard-sphere fluid is mediated by binary collisions.
The collision rate,0coll , thus provides a natural timescale for the dynamics. It can be assessed
from the value of the radial distribution function,g(r), at the collision distance [11]:

0coll = 4σ 2ρg(σ )

√
πkBT

m
(5)

wherem is the particle mass,σ is the hard-sphere diameter andT is the temperature. At the
same time, the hard-sphere diameterσ is a natural unit of length. In terms of these units, the
above conjecture implies that

D = A0collσ 2eSex . (6)

In order to apply this model to real liquids, it can be assumed that the hard-sphere diameter
σ can be replaced by the position of the first peak ofg(r), which allows one to calculate0coll .
In this way, we can expressD in different liquids in terms of universal units of time and length.
Another approximation concerns the calculation ofSex . The latter can be expressed as an
expansion in terms ofn-particle correlation functions [15]. In the two-particle approximation,
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this gives

S2 = −2πρ
∫
{g(r) ln[g(r)] + [g(r)− 1]}r2 dr. (7)

It was found [5] that, with the use of these approximations, equation (6) universally describes
the relation betweenS andD in a wide range of simple systems with the value of the scaling
constantA = 0.049.

Recently, it was found [16] that the Kolmogorov–Sinai entropy, expressed in terms of0coll ,
is uniquely and universally related to the thermodynamic entropy. This implies that: (i) the
collision frequency represents a universal timescale for the liquid dynamics; (ii) in liquids, the
diffusion rate can be a measure of the rate of exponential chaos.

Equation (6) can be compared with other theories of liquid dynamics involving entropy.
The model of Adam and Gibbs [17] postulates the existence of the cooperativity range, the
minimum size for regions whose configuration can be changed without interfering with the
environment. It conjectures that the relaxation timeτ and the configurational entropySc are
related by

τ = A exp

(
C

SckBT

)
. (8)

Another model, suggested by Di Marzio and Yang [18], relatesτ and the configurational
free energyFc:

logτ = B − AFc/kBT . (9)

An obvious advantage of relation (6) as compared with (8) and (9) is that each of the latter
two uses two free fitting parameters. Notice that parameterA in equation (9) is the number of
particles participating in a single jump. If that relation is interpreted in terms of hard spheres
whereFc/kBT = S, with an additional assumption thatA = 1, it becomes clearly consistent
with (6). In that case,B would be expressed in terms of the collision frequency.

4. Entropy and diffusion in the non-ergodic domain

The dynamics of the supercooled liquid state can be conveniently discussed using the energy
landscape paradigm [1]. Any instantaneous liquid configuration can be uniquely mapped
onto a local potential energy minimum by the steepest-descent minimization [19]. In this
way, the configurational space of a liquid can be uniquely decomposed into a set of basins,
each associated with a respective local minimum. It was found that for the stable liquid
state aboveTm, all of the energy minima are statistically indistinguishable and independent
of the temperature. Based on this observation, a concept of ‘inherent liquid structure’ was
introduced [19].

In the supercooled domain, however, the average energy of the potential energy minima
drops rapidly as the temperature decreases [20]. This indicates that in the supercooled domain,
the liquid resides on a different part of the energy landscape to the normal liquid, predominantly
staying in deep valleys connected by narrow bottlenecks. These connections are effectively
used only on the long timescale, while the short-timescale dynamics of a supercooled liquid
unfolds in a limited subregion of the total region of motion.

In order to illustrate the impact of such a strongly profiled landscape on the liquid relaxation
dynamics, we consider a simple model sketched in figure 1. The whole set of configurations
comprising the region of motion is divided into two components (valleys), depicted by
squares and circles. The filled symbols denote the configurations which are energetically
forbidden. The components are separated by barriers, indicated by solid lines, and the single
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Figure 1. A simple model demonstrating the impact of the valley structure of the phase space on
the relaxation dynamics. Energy barriers separating the valleys are depicted by solid lines. Squares
and circles denote configurations belonging to different valleys. The point of crossover between
the valleys is marked by the cross.

connecting pass is marked by the cross. Consider the probabilitywij of transition between the
configurationsi andj . At high temperature, where the separation of the components is not
relevant, the average transition probability is entirely determined by the average probability that
the destination configuration is allowed, and, in this way, by the entropy:〈wij 〉 = 〈wj 〉 = eS .
Clearly, this leads to the relation (6) for the diffusion rate.

In the case where the dynamics unfolds in the valley landscape, the average probability
of transition can be estimated as〈wij 〉 = 〈wv〉〈wj 〉 where〈wv〉 is the average probability that
both i andj belong to the same valley. Obviously, in this case〈wij 〉 < eS , and therefore
the diffusion rate is expected to show a negative deviation from relation (6). This deviation,
indicating that the liquid dynamics is no longer related to the static properties, can be used as
a macroscopic diagnostics of the onset for the supercooled (non-ergodic) regime.

5. Evidence from molecular dynamics simulation

In order to test the above conjecture, we investigated a two-component hard-sphere liquid
simulated by molecular dynamics. The model consisted of 862 particles. The two species
of hard spheres comprising the model (A and B) are characterized by the ratio of diameters
σA/σB = 1.69 and the ratio of the number densitiesρA/ρB = 0.076. The liquid phase of
this system was found [21] to lose its thermodynamical stability when compressed beyond
the critical value of the packing fractionφ = 0.5. At higher densities, its stable phase was
identified as the AB13 crystal, whose unit cell includes 112 atoms.

Due to the complexity of its crystallization pattern, this system possesses a pronounced
glass-forming ability. In this simulation, it was found to remain in a long-living metastable
equilibrium liquid state when compressed beyond the indicated critical packing fraction value.
The absence of crystalline nucleation was thoroughly verified by monitoring the pressure and
the diffusion coefficient, both of which remained constant during the simulation run.

In order to test relation (6) we calculated the diffusion coefficient and the excess entropy,
in the pair approximation,S2, for the smaller atomic species B, exploring a wide range of
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φ both below and above the critical value.S2 was derived using (6) from two partial radial
distribution functions,gAB(r) andgBB(r).

Figure 2. The reduced diffusion coefficient in the binary mixture of hard spheres as a function of
the excess entropy, in the pair approximation (equation (6)). The dashed line corresponds to the
universal scaling law (6) withA = 0.049.

The results of this simulation are presented in figure 2. It is clear that the results agree
well with relation (6) for sufficiently small values ofS2 within the stable liquid domain. In
the metastable liquid domain, the diffusion coefficient demonstrates a negative deviation from
relation (6). An appreciable deviation starts atS2 = 6, which corresponds toφ = 0.55, and
increases rapidly with increasingφ. The onset of total structural arrest has been observed at
φ = 0.63 whereS2 = 8.

6. Discussion

The above analysis, supported by the evidence from simulation, shows that the onset of the
valley landscape has a dramatic impact on the relaxation dynamics in supercooled liquids.
Long-time decomposition of the phase space which is assumed to take place under supercooling
breaks any conceivable relation between the diffusion rate and the thermodynamic entropy
conjectured for the stable liquid domain. This implies that the relations (6), (8) and (9)
become invalid in the supercooled liquid domain. In fact, it has been demonstrated here that the
breaking of relation (6) can be used as a diagnostics of the onset for the valley landscape under
supercooling. On the other hand, decomposition of the phase space into separate regions of
connected stochasticity leads to the separation of the timescales which is commonly associated
with non-ergodic behaviour.

The long-time decomposition of the region of motion can be viewed as a reduction of the
time-dependent effective entropy which measures the volume of the accessible phase-space
region, as compared with the thermodynamic entropy. On the other hand, the entropy, as
was pointed out above, can be related to the correlation length. Therefore, on the timescale
characterizing the decomposition of the phase space of a supercooled liquid, the relaxation
dynamics is expected to be correlated within a range exceeding the range of the static structural
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correlations. This consideration suggests the existence in the supercooled liquid of large-scale
long-living clusters.

The characteristic length of the above-described cooperative effects can be directly probed
by measuring the rate of the liquid dynamics in confined geometries. It has to be emphasized
that the time-limited cooperativity is decoupled from the static structure and, therefore, from
the thermodynamic entropy. This conclusion was supported by the simulation of lattice-gas
models [22]. Attempts to interpret the cooperative dynamics of supercooled liquids in terms
of the Adam–Gibbs theory [23] which refers to the (static) configurational entropy, although
common, are logically incorrect. In order to detect the existence of time-limited clusters, it
is crucial to compare the cooperativity range, as derived from the dynamical measurements,
with the range of the static structural correlations which, at least for quasi-simple liquids, can
be assessed from the diffraction measurements.
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